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An analytical method is presented which solves 2-D potential flow in a rectangular domain 
containing multiple vortices fixed in space. A double infinite image system is used to satisfy 
the zero normal velocity boundary condition. Because of its accuracy and speed of 
calculation, the solution can serve as the building block for predicting wall-driven cavity flows 
at high Reynolds number using the random vortex method of Chorin. This communication 
outlines the derivation of the analytical method and presents tests performed to check its 
validity. Two limiting flow cases predicted from the analysis correspond respectively to: [aj 
the line vortex problem between parallel planes; and (b) the vortex pair problem in an infinite 
domain. The results obtained show excellent agreement with established exact so1utior.s. 

1. INTRODUCTION 

The closed cavity problem with one sliding wall driving a fluid within it has been 
used frequently as a test for finite difference and finite element methods [l-8] in fluid 
mechanics. However, it has been difficult and expensive to obtain accurate results for 
high Reynolds number flow due to the large computer time and storage requirements 
for detailed calculations. Finite difference and finite element techniques require fairly 
refined grids in regions of sharp velocity gradients such as recirculation zones and 
near walls in order to reduce numerical diffusion errors. Shestakov [9] solved the 
wall-driven cavity flow problem by combining a finite difference method with the 
random vortex blob method of Chorin [lo]. The latter is a grid-free method, with an 
error which is proportional to the inverse square root of the Reynolds number. Initia! 
difficulties experienced with rates of convergence of the vortex blob method near 
boundaries were overcome by Chorin [ 1 l] through the development of the random 
vortex sheet method. Our long-term objective is to solve the wall-driven closed cavity 
flow problem at high Reynolds number using the random vortex blob method in the 
bulk of the flow and the random vortex sheet method near boundaries. Of special 
interest is the case of a non-isothermal flow with buoyant effects. As a first step 
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towards this objective, we have focused on the problem of predicting 2-D potential 
flow inside a rectangle containing one or several vortices fixed in space. This solution 
can then be used to generate the required vortex sheets at solid walls and to obtain 
the velocity of a vortex blob due to surrounding vortex blobs. 

Ghoniem [12] has solved turbulent flow over a backward facing step using the 
random vortex method. In this 2-D problem, the Schwarz-Christoffel conformal 
mapping method is used to derive the potential flow. However, in a closed cavity it is 
difficult to use conformal mapping because the vortex blobs distribute to infinity in 
the transformed plane 

Greenhill [ 131 solved for the path of a vortex in a rectangular domain due to its 
own images; he analyzed several rectangular configurations but attention was 
confined to the path of a.single vortex. He also solved for the stream function due to 
a vortex located at the center of a rectangular domain using symmetry conditions. 
This solution is of special interest to the present study for validation purposes. 

This communication presents the analytical solution for potential flow in a 
rectangular domain due to one or several vortices fixed at arbitrary locations within 
it. The solution provides the stream function and the velocity components in closed 
form using elliptic functions. The analysis presents an advancement over the work of 
Greenhill since it allows calculations to be performed in closed form at arbitrary 
positions within rectangular domains. 

2. ANALYSIS 

Let us fix a single real vortex at position (x,,~~r) inside a 2-D rectangular domain 
of dimensions a = 3, b = 2 as shown in Fig. 1. The stream function satisfies 

v2y = -5 (1) 

where 

w BY 
u=w v=-a,y’ 

The vorticity is then described in terms of 

~=rd(x-x,,y--y,) 

where 6 is the Dirac a-function and I- is the vortex strength defined by 

r= lim 1 
AA-0 ! AA tdA 

where r is acting on area AA. The general solution of Eqs. (1) and (3) is 

y=-~lr~d(x-x,)~ + (u--yr)‘. 

(4 

(3) 

(4) 

(5) 
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FIG. 1. The rectangular configuration and double infinite image system. 

The double infinite image system shown in Fig. I is used to satisfy the impermeable 
normal boundary condition, v . n = 0. The coordinates of the images are given by 

(xi + 2ma, y, + 2nb), (2a - x, + 2~14 2b -y, + 2nb) 

in the positive direction and 

(2a - x, + 2ma, yI + 2nb), (x, + 2ma, 2b -y, + 2nb) 

in the negative direction, where m and n are integers and counter-clockwise vortices 
are taken as positive. Using Eq. (5) for each image and summing over all images 
yields the stream function at an arbitrary position (x, y). The result is 

y/=--rln n=m m=zc 
.=Q, ,_rl, dG2ma)” + 0 -yl - 2sb)’ 

n = m m = m 
-r ln ,,=c, ,Ex dm x, - 2ma)” + (y - 2b f y, - 2nb)’ (6) 

n = m m = m 
+I- In ,,II, ,11, \/(x -x, - .2ma)2 + (y - 26 +yl - hb)’ 

J 
n= m nl=3c 

+r In n n d-x, - 2ma)’ + (y -yr - 2nb)*. 
n=-uL, m=-m 

Note that this can be written as 

ty=F(x-x,,y-yy,)+F(x-2a+x,,y-2b+y,) 

-F(x-x,,Jl-2b+y,)-F(x-22a+x,,y--y,) 
(11 
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where 

f2-a m=-m 

F(x,y)=-f In n JJ [C-x + 2ma)2 + (y + 2nb)2]. (8) n=ici 
m=CC 

Using the relationship a’ + b” = (a + bi)(a - bi), where i = fl, we can write the 
last expression as 

where 

G(m,n)=-$ In n n (2ma + 2nbi)2. 
tl#O m+o 

It is possible to express this result in terms of the elliptic functions sn(u, k), 
cn(u, k) and dn(u, k) to obtain an expression that can be easily calculated using the 
Landen transformation. The resulting expression for the stream function is (see 
Appendix A) 

(11) 

where 

(12) 

and 

.7c/2 
K’ = 

I dl - k2 sin’ 4 ’ d/1 - k12 sin’ $ ’ -0 0 

Note that k is the modulus, k’ = dm and K/K’ = a/b. Finally, 

(13) 

U=P,,(x-xx1,4’--4’1)+P,,(x-2a+x,,y-2b+y,) 

- P,,(x - x1, y - 2b + yJ - P&c - 2a + x1 y Y -Y,) 

ZI = - P,(X - -‘cl, y - y,) - P,(X - 2a + x1, Y - 2b + ul> 

+P,(~-x,,y--~)+P,(x--a+x,,y--y,) 

(14) 

(15) 
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where 

P _ _ KT cn2(Kx/u, k) cn(Ky/a, k’) sn(Ky/a, k’) dn(Ky/a, k’) 
P (16) 

a [ 1 - cn’(Kx/a, k) cr?(Ky/a, k’)] 

P _ _ KT cn’(Ky/a, k’) cn(Kx/a, k) sn(Kx/u, k) dn(Kx/a, k) 
x a [ 1 - cn’(Kx/a, k) cn2(Ky/a, k’)] ’ 

(17) 

Since the equation of motion and the impermeable and slip boundary conditions 
are linear, superposition can be used to apply this method to the case of potential 
flow in a rectangle containing multiple spatially fixed vortices. 

3. TESTING 

3.1. Comparison of Present Analysis with Established Exact Solutions 

The solution for the case of a single vortex contained in a rectangular domain with 
b/a--t co is derived and compared with the solution of the line vortex problem 
between parallel planes. Let the single vortex cl be fixed at (x, ,yl) and take the 
aspect ratio (b/a) as infinite. For this case, k, k’, K and K’ become 

a K -1-y 
b K’ 

0; k=O; k’= 1; K=J+ K’=a. f.18) 

Displacing the origin of the coordinate system to the center of the rectangular domain 
allows use of the relations 

cn(x, 0) = cos x 

cn(x, 1) = sech x. 

The simplified expression for Eq. (11) is 

I- 
’ = - T In 

(cosh(rc(y - ~,)/a) - cos(n(zc -x,)/a)) 
(cosh(z(g - yl)/a) - cos(n(x - a + x,)/a) ’ (20) 

This analytical result corresponds exactly to the solution of the line vortex problem 
between parallel planes derived in Appendix B. 

A second test case was performed, essentially corresponding to a pair of counter- 
rotating vortices in an infinite domain. This problem was approximated by 
positioning the real vortices rr, c2 at the locations (0, 1) and (0, - 1) in a square of 
sides a = b = 3000 (i.e., very large). The vortex strengths rl and Tz were fixed to be 
equal and opposte in sign. The velocity components u and L’ at y = 0 were obtained 
by superposition of the analytical solution given by Eqs. (14) and (15) for each 
vortex. 
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The well-known solution [ 171 of the vortex pair problem in this case is 

2X2 - 2(yZ - 1) 
u = [x2 + (y - 1)2][x2 + (y + 1)2] 

(21) 
4xy 

U=[X’+(Y-l)z][x2+(J’+1)2]’ 

A comparison between present calculations and the exact solution of the vortex pair 
problem is given in Fig. 2 and shows excellent agreement. 

Finally, a comparison was made between the present analysis and Greenhill’s [ 131 
solution for the stream function due to a single vortex located at the center of a 
rectangular domain. Displacing the origin of the coordinate system to the center of 
the rectangular domain and fixing the vortex at (O,O), after some algebraic 
manipulation, allows Eq. (11) to be rewritten as 

y=-fln [ 1 - cn(2Kx/a, k) cn(2Ky/a, k’)] 
[ 1 + cn(2Kx/a, k) cn(2Ky/a, k’)] * 

This analytical result corresponds exactly to Greenhill’s [ 131 solution. 

(22) 

LL----- 
0 5 

X-COORDINATE 

FIG. 2. Comparison between the limiting case solution of the infinite rectangular domain and the 
exact solution of the vortex pair problem. Vortex position t,(O, l), lz(O, -l), strength T, = - 10, r2 = 10. 
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The above comparisons between established exact solutions and results derived 
from the present analysis establish confidence in the latter. 

3.2. Potential Flow in a Rectangle Containing One or More Fixed Cl’ortices 

Let 4 real vortices c$~, &, &, & be fixed in a rectangular domain a = 3, b = 2 at 
the arbitrary locations (1, OS), (0.5, 1.5), (2.3, 1.7), (l.S,O.8). The configuration of 
interest is shown in Fig. 3. Velocity profiles along the plane y = 1 were caicuiated 
using Eqs. (14) and (15). To check present results, approximate solutions for this 
case were obtained from the truncated series solutions using 50 + 50 * 4 images and 
5 :I: 5 * 4 images around the rectangle. The comparison is shown in Fig. 4. The 
maximum percentage error relative to the analytical result was found to be 3,8 06 for 
100 images and 0.1 oio for 10,000 images. The approximate truncated series so&ion 
converges to the analytical result with an increase in the number of images used. 

It is possible to calculate the velocity of a vortex due to its own images and the 
influence of other vortices by combining the present analytical solution with 
Greenhill’s solution [ 131. This is desirable because the result is needed, together with 
the wall velocity, to solve the wall-driven closed cavity flow problem using the 
random vortex method. First, the velocity of a vortex due to its own images is found 
using Greenhill’s solution [ 131. Greenhill showed that the stream function at vortex 
position (x, , u,) due to its own images is given by 

From this stream function, the velocity components u and c can be found: 

KTcn(2Ky,/a, k’) dn(2Ky,/a, k’) 
’ = a[ 1 + cs2(2Kx,/a, k) + cs2(2Ky,/a. k’)] Sn3(2KJ~l/a, k’) 

- KTcn(2Kx,/a, k) dn(2Kx,/a, k) 
’ = a[ 1 + cs2(2Kx,/a, k) + cs’(2Ky,ja, k’)] sn3(2Kx,/a, k)’ 

1 

s I J 

G 1 2 3 

FIG. 3. Configuration examined for the case of multiple vortices. 

(23) 

(24) 

(251 
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FIG. 4a. Comparison between the analytical solution and the approximate results at Y= 1 in a 
rectangle A = 3, B = 2. Vortex position r,(l, 0.5), &(0.5, 1.5), c&2.3, 1.7), &(1.8,0.8). Vortex strength 
r, = 10, rz = 10, rl = 10, I-, = 10. 
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FIG. 4b. Comparison between the analytical solution and the approximate results at Y= 1 in a 
rectangle A = 3, B = 2. Vortex position (,(I, OS), &(0.5, 1.5), lJ2.3, 1.7), &(1.8,0.8). Vortex strength 
I-, = 10, f2 = 10, r, = 10, r, = 10. 
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TABLE I 

The Differences between Calculations of Velocity Using the Analytical Solution and the Approximate 
Image Method at the Vortex Position (1.0, 0.5) in a Rectangular Domain with a = 3. b = 2. Four 

Vortices & at (l.O? OS), (0.5, 1.5), (2.3, 1.7), (1.8, 0.8) with r, = 10 

X-Direction Velocity CI 

Position 

x J’ UC2 u, [(U, - u”)lc~o] TOO 

1.0 0.5 18.7854652 18.7821579 0.0176059 
0.5 1.5 -11.7206106 -11.7247639 -0.0354355 
2.3 1.7 -24.6013451 -24.6025257 -0.0047991 
1.8 0.8 6.3184361 6.3164458 0.03 IS002 

Y-Direction Velocity V 

Position 

.Y I’ v - LI C’n [(V, V,)/VG] 100 

I.0 0.S -7.8478298 -7.8453555 0.0315286 
0.S 1.5 -11.8070669 -11.8062372 0.007027 I 
2.3 1.7 5.7389870 5.7394867 -0.0087076 
1.8 0.8 7.6620049 7.6640153 -0.0262379 

Note. U,, V,: Velocity components of vortex due to its own images and the surrounding vortices 
using the analytical solution. lJ”, V,: Velocity components of vortex due to its own images and the 
surrounding vortices using 6400 images. 

Using these relations, the velocity components at, for example, (1,0.5) due to the 
images of <, at this location can be found. These components are then added to the 
velocity components at the same point, due to the surrounding vortices and their 
images, using the analytical solution. The velocity components of the other vortices 
are obtained analogously. Table I provides a comparison between the above 
analytical procedure and approximate results using 20 * 20 * 4 * 4 images. The test 
shows that a combination of the analytical solution with Greenhill’s solution 
corresponds closely to the approximate solution using images. 

4. CONCLUSIONS 

An analytical solution for 2-D potential flow inside a rectangle with multiple 
vortices has been derived and tested. This closed form solution gives the stream 
function and velocity components at arbitrary positions due to vortices and their 
infinite images in terms of elliptic functions. The main advantage of the analytic 
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solution is that it requires only 6 iterations for convergence, while corresponding 
numerical evaluations using over lo4 images to attain the same degree of accuracy 
require over 10” iterations. In calculations using the random vortex method, if n 
vortex blobs are present in the fluid, then 0(n’) interactions must be computed per 
time step. If truncated series (approximate) numerical calculation procedures are 
used, computing times will be very long. 

The agreement found between the analytical solution and truncated series 
numerical evaluations suggests that the analytical solution has been correctly derived. 
In addition, tests with respect to exactly known flow solutions show that the present 
analysis is physically sound. The analytical results can be used as the building block 
for calculations of non-isothermal wall-driven cavity flows. This is presently the 
subject of ongoing research. 

APPENDIX A: PROOF OF EQ. (11) IN THE MAIN TEXT 

The Jacobian function H is defined as [ 141 

2kk’K 
H(u, k)= ~ II---- 71 ’ n n ‘+2mK;ZnK’i] (A-1) 

,120 m+o 

where k is the modulus and K = if2 _ d4/dl - k’ sin’ 4; note also that k’ = \/1-k’ 
and K’ = I;” d#/\/l - k” sin’ 4. Using Eq. (A-l), the first part of F(x,J’) given by 
Eq. (9) in the next is 

where K/K’ = a/b. Similarly: 

Combining these results yields 

+G(m,n). (A-4) 
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The Jacobian functions H and 0 are defined as [ 15, 16 ] 

H(x + yi, k) H(x - yi, k) = & [H*(x, k) O’(yi,k) - H’(yi, k) @(x, k)] 

H(yi, k) = i $ exp (&) WY&‘) il”,:L,\ 

O(0, kj 
O(0, k’) 

i 2k’K 
O(O;k)=,/y-, O(0, k’) = ,/F. 

From Eqs. (A-4) to (A-8) it follows that 

F(x, y) = - f In ‘*** ) exp ($$I 
,4K3K’kk’* 

25 

(A-5) 

(A-6) 

(.4-q 

(A-8) 

+ G(m, n) 

=-+ln 
( 

z’ab H*(Kx/a, k) H’(Ky/a + K’, k’) H’(Ky/a, k-‘) 
4K3K’kk’* ,[ @*(Kx/a, k) @‘(Ky/a, k’) 1 + 02(Ky/a. k’) 2 

x e2 (+, k) O2 (T, k’) - =;f$’ + G(m, n). 

The relations between the elliptic functions sn(u, k), cn(u, kj? dn(u, kj and the 
Jacobian functions H, 0 are [ 151 

H(u+K,k) ‘k’ 
= O(U, kj J k cn(u, k) 

s = fi sn(u, k) 
l 

3 

sn’(u, k) + cn’(u, k) = 1. 

Using Eqs. (A-10) to (A-12), Eq. (A-9) becomes 

F(x,y)=c+P(x,y)-rln 0 [G-k) -Tin O($,k’) 

-$$$+G(m,n) 

(A-12) 

(A-93) 
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where 

and 
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c=-Jln n’ab 
2 4Kr2K2kkf 

P(x,g)=-$-ln l-cn2 [ [$,k) cn’i$,k’)] (A-15) 

(A-14) 

Substituting Eq. (A-13) into Eq. (7) in the text yields 

~=P(x-x,,y-y,)+P(x-2a+x,,y-2b+4’,) 

-~(~-x~,y-2b+y,)-P(x-2a+x,,y-y,). 
(A-16) 

APPENDIX B 

The general solution of the line vortex problem between parallel planes is 

-a/2 

For this case the complex velocity potential Wn becomes 

Wn(Z) = -iT g In(Z - Z, + 2ma) + iT f ln(Z - Z, + 2ma) 
In= --CT i?=-02 

(B-1) 
= -iT In 

[ 

(n(Z - Z,)/2a) nz= 1 (1 - (Z - Z,)‘/m’(2a>2> 
(x(Z - Z,)/2a) IT:=, (1 - (Z - Z,)‘/m2(2a)2) I ’ 

Using the infinite product form of sin x [ 181: 

sinx=x fi 1-A 
111 = 1 ( m n- 1 

equation (B-2) yields 

Wn(Z) = - iT In 
sin(7r(Z - ZJ2a) 
sin(7c(Z - Z,)/2a) ’ 

(B-2) 

(B-3) 
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For this complex velocity potential the final form of the stream function can be 
shown to be 

r [cosh(Tc(y -~‘,)/a) - cos(+ - x,)/a)] 
’ = - T In [cosh(z(y -~~,)/a) - cos(@ - a + x1)/a)] * 

(B-4) 

This result is identical to Eq. (20) in the text. 
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